歡迎光臨管理范文網
當前位置:工作總結 > 總結大全 > 總結范文

數學基礎總結(九篇)

發(fā)布時間:2023-01-29 19:15:04 查看人數:67

數學基礎總結

【第1篇 中考數學基礎知識要點總結

中考數學基礎知識要點總結

實數

⑴數軸的三要素為 、 和 .數軸上的點與 構成一一對應.

⑵實數的相反數為________.若 , 互為相反數,則= .

⑶非零實數的倒數為______.若 , 互為倒數,則 = .

⑷絕對值.

⑸科學記數法:把一個數表示成 的形式,其中1≤<10的數,n是整數.

⑹一般地,一個近似數,四舍五入到哪一位,就說這個近似數精確到哪一位.這時,從左邊第一個不是 的數起,到 止,所有的數字都叫做這個數的有效數字.

(略)

數的開方

⑴任何正數 都有______個平方根,它們互為________.其中正的平方根 叫_______________. 沒有平方根,0的算術平方根為______.

⑵任何一個實數都有立方根,記為 .

3.實數的分類: 和 統(tǒng)稱實數.

4. (其中 0且 是 ) (其中 0)

(略)

整式

(1)單項式:由數與字母的 組成的代數式叫做單項式(單獨一個數或 也是單項式).單項式中的 叫做這個單項式的系數;單項式中的所有字母的 叫做這個單項式的次數.

(2)多項式:幾個單項式的 叫做多項式.在多項式中,每個單項式叫 做多項式的' ,其中次數最高的項的 叫做這個多項式的次數.不含字母的項叫做 .

(3)整式: 與 統(tǒng)稱整式.

4.同類項:在一個多項式中,所含 相同并且相同字母的 也分別相等的項叫做同類項.合并同類項的法則是 ___.

5.冪的運算性質:am·an= ; (am)n= ; am÷an=_____; (ab)n= .

(略)

因式分解

1.因式分解:就是把一個多項式化為幾個整式的 的形式.分解因式要進行到每一個因式都不能再分解為止.

2.因式分解的方法:⑴ ,⑵ ,⑶ .

3.提公因式法:__________ _________.

4.公式法:⑴

⑵ ,

⑶ .

5.十字相乘法: .

6.因式分解的一般步驟:一“提”(取公因式),二“用”(公式).

7.易錯知識辨析

(1)注意因式分解與整式乘法的區(qū)別;

(2)完全平方公式、平方差公式中字母,不僅表示一個數,還可以表示單項式、多項式.

1.簡便計算:.

2.分解因式: ____________________.

3.分解因式: ____________________.

4.分解因式:____________________.

5.分解因式 .

6.將分解因式的結果是 .

分式

1.分式:整式a除以整式b,可以表示成的形式,如果除式b中含有 ,那么稱為分式.若 ,則有意義;若 ,則無意義;若 ,則=0.

2.分式的基本性質:分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的 .用式子表示為 .

3.約分:把一個分式的分子和分母的 約去,這種變形稱為分式的約分.

4.通分:根據分式的基本性質,把異分母的分式化為 的分式,這一過程稱為分式的通分.

例1:

(1)當_ 時,分式無意義;

(2)當_ 時,分式的值為零.

例2:⑴ 已知 ,則 = .

⑵已知 ,則代數式的值為 .

例3:先化簡,再求值:

(1)(-)÷,其中_=1.

⑵,其中.

(略)

二次根式

1.二次根式的有關概念

⑴式子 叫做二次根式.注意被開方數只能是 .并且根式.

⑵簡二次根式:被開方數所含因數是 ,因式是 ,不含能 的二次根式,叫做最簡二次根式.

(3)同類二次根式:化成最簡二次根式后,被開方數 的幾個二次根式,叫做同類二次根式.

2.二次根式的性質:

⑴ 0;

⑵ (≥0); ;

⑶ ;

⑷ .

(略)

方程(組)和不等式

(1)判斷一個方程是不是一元一次方程,首先在整式方程前提下,化簡后滿足只含有一個未知數,并且未知數的次數是1,系數不等于0的方程,像, 等不是一元一次方程.

(2)解方程的基本思想就是應用等式的基本性質進行轉化,要注意:①方程兩邊不能乘以(或除以)含有未知數的整式,否則所得方程與原方程不同解;②去分母時,不要漏乘沒有分母的項;③解方程時一定要注意“移項”要變號.

【第2篇 2023年上半年初中數學基礎知識點總結范文

一、數與代數a、數與式:1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數

數軸

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

絕對值

①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:加法

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

③一個數與0相加不變。

減法:減去一個數,等于加上這個數的相反數。

乘法

①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘得0。

③乘積為1的兩個有理數互為倒數。

除法

①除以一個數等于乘以一個數的倒數。

②0不能作除數。

乘方:求n個相同因數a的積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。

混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

2、實數 無理數:無限不循環(huán)小數叫無理數

平方根

①如果一個正數_的平方等于a,那么這個正數_就叫做a的算術平方根。

②如果一個數_的平方等于a,那么這個數_就叫做a的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數a的平方根運算,叫做開平方,其中a叫做被開方數。

立方根

①如果一個數_的立方等于a,那么這個數_就叫做a的立方根。

②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

③求一個數a的立方根的運算叫開立方,其中a叫做被開方數。

實數

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

3、代數式

代數式:單獨一個數或者一個字母也是代數式。

合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

4、整式與分式

整式

①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

冪的運算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一樣。

整式的乘法

①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法

①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式

①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

分式的運算

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等于乘以這個分式的倒數。

加減法

①同分母分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程

①分母中含有未知數的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

b、方程與不等式

1、方程與方程組

一元一次方程

①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程

1)一元二次方程的二次函數的關系

大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與_軸的交點。也就是該方程的解了

2)一元二次方程的解法

大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

(3)公式法

這方法也可以是在解一元二次方程的萬能方法了,方程的根_1={-b+√[b2-4ac)]}/2a,_2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步驟

(1)配方法的步驟

先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

(2)分解因式法的步驟

把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

(3)公式法

就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

4)韋達定理

利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

也可以表示為_1+_2=-b/a,_1_2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

5)一元一次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況

i當△0時,一元二次方程有2個不相等的實數根;

ii當△=0時,一元二次方程有2個相同的實數根;

iii當△0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)

2、不等式與不等式組

不等式

①用符號〉,=,〈號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

一元一次不等式組

①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

一元一次不等式的符號方向

在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:ab,a+cb+c

在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:ab,a-cb-c

在不等式中,如果乘以同一個正數,不等號不改向;例如:ab,a_cb_c(c0)

在不等式中,如果乘以同一個負數,不等號改向;例如:ab,a_c

如果不等式乘以0,那么不等號改為等號

所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立;

3、函數

變量:因變量,自變量。

在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

一次函數

①若兩個變量_,y間的關系式可以表示成y=k_+b(b為常數,k不等于0)的形式,則稱y是_的一次函數。

②當b=0時,稱y是_的正比例函數。

一次函數的圖象

①把一個函數的自變量_與對應的因變量y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

②正比例函數y=k_的圖象是經過原點的一條直線。

③在一次函數中,當k〈0,b〈o,則經234象限;當k〈0,b〉0時,則經124象限;當k〉0,b〈0時,則經134象限;當k〉0,b〉0時,則經123象限。

④當k〉0時,y的值隨_值的增大而增大,當_〈0時,y的值隨_值的增大而減少。

一、理論學習使我得到了的知識在這兩個月里,我系統(tǒng)學習了馬克思主義基本理論、黨史黨建、行政法律、公共管理、經濟理論、領導科學、wto知識、計算機等課程;學習了三個代表重要思想,更深領會其科學的思想內涵;學習了__大以及__屆三中...

護士個人對照材料(一)根據醫(yī)院、護理部黨的群眾路線教育實踐活動統(tǒng)一部署,在教育實踐活動查擺問題、開展批評環(huán)節(jié)當中,本人對照黨章、廉政準則、改進作風要求、群眾期盼、先進典型進行了五對照剖析,現將剖析材料總結一、自身存在...

初中物理學習記憶方法總結...

多數高三學生都參加了月考,正是這一次小小的考試,打亂了很多學生復習節(jié)奏,這幾天也見了一些學生和家長,從和他們的交流來看,多數人對月考成績非常重視。因此很多學生整個假期都想著月考的事情,有的期待,是心里沒有底氣。

黨的作風建設是黨的性質、宗旨、綱領、路線的重要體現,是黨員世界觀、人生觀、價值觀的外在表現。所以,黨的作風建設是關系我們黨和國家生死存亡的大事。

__年,黨政辦公室在鎮(zhèn)黨委、鎮(zhèn)人大、鎮(zhèn)政府的正確領導下,在機關各部門的大力支持下,按照實現一個目標(工作創(chuàng)一流)、提升兩個水平(著力提升政務服務水平和后勤服務水平)、建立三大機制(構建應急信息管理機制、督查督辦機制、綜合協(xié)調機制...

這次先來總結的實習內容是品牌部的視頻設計??粗偙O(jiān)大致上是走這個流程的客戶要求點整理,策劃。我尚未參加策劃部分。制定故事臺本,和客戶反饋,基本上每一步都最好及時反饋,不然就是白用功,這是老板得出的結論。

【第3篇 中考數學基礎的知識總結

中考數學基礎的知識總結

基本定理

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的余角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理三角形兩邊的和大于第三邊

16、推論三角形兩邊的差小于第三邊

17、三角形內角和定理三角形三個內角的和等于180°

18、推論1直角三角形的兩個銳角互余

19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和

20、推論3三角形的一個外角大于任何一個和它不相鄰的內角

21、全等三角形的對應邊、對應角相等

22、邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等

23、角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等

24、推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等

25、邊邊邊公理(sss)有三邊對應相等的兩個三角形全等

26、斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等

27、定理1在角的平分線上的點到這個角的兩邊的距離相等

28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點的集合

30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35、推論1三個角都相等的三角形是等邊三角形

36、推論2有一個角等于60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

38、直角三角形斜邊上的中線等于斜邊上的一半

39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42、定理1關于某條直線對稱的兩個圖形是全等形

43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2b2=c2

47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2b2=c2,那么這個三角形是直角三角形

48、定理四邊形的內角和等于360°

49、四邊形的外角和等于360°

50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°

51、推論任意多邊的外角和等于360°

52、平行四邊形性質定理1平行四邊形的對角相等

53、平行四邊形性質定理2平行四邊形的對邊相等

54、推論夾在兩條平行線間的平行線段相等

55、平行四邊形性質定理3平行四邊形的對角線互相平分

56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

60、矩形性質定理1矩形的四個角都是直角

61、矩形性質定理2矩形的對角線相等

62、矩形判定定理1有三個角是直角的四邊形是矩形

63、矩形判定定理2對角線相等的平行四邊形是矩形

64、菱形性質定理1菱形的四條邊都相等

65、菱形性質定理2菱形的`對角線互相垂直,并且每一條對角線平分一組對角

66、菱形面積=對角線乘積的一半,即s=(a×b)÷2

67、菱形判定定理1四邊都相等的四邊形是菱形

68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

69、正方形性質定理1正方形的四個角都是直角,四條邊都相等

70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71、定理1關于中心對稱的兩個圖形是全等的

72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等

75、等腰梯形的兩條對角線相等

76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

77、對角線相等的梯形是等腰梯形

78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半l=(ab)÷2s=l×h

【第4篇 經濟類數學基礎的復習指導總結

經濟類數學基礎的復習指導總結

第一、考查目標

經濟類聯考綜合能力這是一個具有選拔性質的聯考科目。其目的是科學、公平、有效地測試考生是否具備攻讀上述專業(yè)學位所必需的基本素質、一般能力和培養(yǎng)潛能。

要求考生:

1.具有運用數學基礎知識、基本方法分析和解決問題的能力。

2.具有較強的邏輯分析和推理論證能力。

3.具有較強的文字材料理解能力和書面表達能力。

第二、考試形式和試卷結構

一、試卷滿分及考試時間

試卷滿分為150分,考試時間為180分鐘。

二、答題方式

答題方式為閉卷、筆試。不允許使用計算器。

三、試卷包含內容

1、數學基礎(70分)2、邏輯推理(40分)3、寫作(40分)

四、考查內容

經濟類聯考綜合能力考試中的.數學基礎部分主要考查考生經濟分析中常用數學知識的基本方法和基本概念。

試題涉及的數學知識范圍有:

1、微積分部分

一元函數的微分、積分;多元函數的一階偏導數;函數的單調性和極值。

2、概率論部分

分布和分布函數的概念;常見分布;期望值和方差。

3、線性代數部分

線性方程組;向量的線性相關和線性無關;矩陣的基本運算。

【第5篇 七年級數學基礎公式重點總結

幾何形體計算公式

1、長方形的周長=(長+寬)×2c=(a+b)×2

2、正方形的周長=邊長×4c=4a

3、長方形的面積=長×寬s=ab

4、正方形的面積=邊長×邊長s=a.a=a

5、三角形的面積=底×高÷2s=ah÷2

6、平行四邊形的面積=底×高s=ah

7、梯形的面積=(上底+下底)×高÷2s=(a+b)h÷2

8、直徑=半徑×2d=2r半徑=直徑÷2r=d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2c=πd=2πr

10、圓的面積=圓周率×半徑×半徑

體(容)積重量

體(容)積重量

體(容)積單位換算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量單位換算

1噸=1000千克

1千克=1000克

1千克=1公斤

直角三角形定理

直角三角形的性質:

①直角三角形的兩個銳角互為余角;

②直角三角形斜邊上的中線等于斜邊的一半;

③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);

④直角三角形中30度

角所對的直角邊等于斜邊的一半;

直角三角形的判定:

①有兩個角互余的三角形是直角三角形;

②如果三角形的三邊長a、b、c有下面關系a^2+b^2=c^2

,那么這個三角形是直角三角形(勾股定理的逆定理)。

利潤與折扣問題

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅后利息=本金×利率×時間×(1-20%)

銳角三角函數公式

銳角三角函數公式

兩角和與差的三角函數:

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-cosasinb?

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota)

cot(a-b)=(cotacotb+1)/(cotb-cota)

·三角和的三角函數:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

【第6篇 初中數學基礎知識點總結

一、數與代數a、數與式:1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數

數軸:

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

絕對值:

①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

③一個數與0相加不變。

減法:減去一個數,等于加上這個數的相反數。

乘法:

①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘得0。

③乘積為1的兩個有理數互為倒數。

除法:

①除以一個數等于乘以一個數的倒數。

②0不能作除數。

乘方:求n個相同因數a的積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。

混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

2、實數 無理數:無限不循環(huán)小數叫無理數

平方根:

①如果一個正數_的平方等于a,那么這個正數_就叫做a的算術平方根。

②如果一個數_的平方等于a,那么這個數_就叫做a的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數a的平方根運算,叫做開平方,其中a叫做被開方數。

立方根:

①如果一個數_的立方等于a,那么這個數_就叫做a的立方根。

②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

③求一個數a的立方根的運算叫開立方,其中a叫做被開方數。

實數:

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

3、代數式

代數式:單獨一個數或者一個字母也是代數式。

合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

4、整式與分式

整式:

①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

冪的運算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一樣。

整式的乘法:

①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式:

①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

分式的運算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等于乘以這個分式的倒數。

加減法:

①同分母分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:

①分母中含有未知數的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

b、方程與不等式

1、方程與方程組

一元一次方程:

①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程

1)一元二次方程的二次函數的關系

大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與_軸的交點。也就是該方程的解了

2)一元二次方程的解法

大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

(3)公式法

這方法也可以是在解一元二次方程的萬能方法了,方程的根_1={-b+√[b2-4ac)]}/2a,_2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步驟:

(1)配方法的步驟:

先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

(2)分解因式法的步驟:

把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

(3)公式法

就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

4)韋達定理

利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

也可以表示為_1+_2=-b/a,_1_2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

5)一元一次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:

i當△>0時,一元二次方程有2個不相等的實數根;

ii當△=0時,一元二次方程有2個相同的實數根;

iii當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)

2、不等式與不等式組

不等式:

①用符號〉,=,〈號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

一元一次不等式的符號方向:

在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:a>b,a+c>b+c

在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:a>b,a-c>b-c

在不等式中,如果乘以同一個正數,不等號不改向;例如:a>b,a_c>b_c(c>0)

在不等式中,如果乘以同一個負數,不等號改向;例如:a>b,a_c

如果不等式乘以0,那么不等號改為等號

所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立;

3、函數

變量:因變量,自變量。

在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

一次函數:

①若兩個變量_,y間的關系式可以表示成y=k_+b(b為常數,k不等于0)的形式,則稱y是_的一次函數。

②當b=0時,稱y是_的正比例函數。

一次函數的圖象:

①把一個函數的自變量_與對應的因變量y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

②正比例函數y=k_的圖象是經過原點的一條直線。

③在一次函數中,當k〈0,b〈o,則經234象限;當k〈0,b〉0時,則經124象限;當k〉0,b〈0時,則經134象限;當k〉0,b〉0時,則經123象限。

④當k〉0時,y的值隨_值的增大而增大,當_〈0時,y的值隨_值的增大而減少。

【第7篇 小學數學基礎知識總結

小學數學基礎知識總結

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮?。┫嗤谋稊担滩蛔?。o除以任何不是o的數都得o。

簡便乘法:被乘數、乘數末尾有o的乘法,可以先把o前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、么叫等式?等號左邊的數值與等號右邊的數值相等的'式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8、什么叫方程式?答:含有未知數的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。

10、分數:把單位'1'平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等于分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20、一個數除以分數,等于這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等于甲數乘以乙數的倒數

【第8篇 最新小學數學基礎運算公式總結

最新小學數學基礎運算公式總結

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數

3、速度×時間=路程路程÷速度=時間路程÷時間=速度

4、單價×數量=總價總價÷單價=數量總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率

6、加數+加數=和和-一個加數=另一個加數

7、被減數-減數=差被減數-差=減數差+減數=被減數

8、因數×因數=積積÷一個因數=另一個因數

9、被除數÷除數=商被除數÷商=除數商×除數=被除數

【第9篇 小學數學基礎:幾何體常用公式總結

小學數學基礎:幾何體常用公式總結

1.正方形

正方形的周長=邊長4 公式:c=4a

正方形的面積=邊長邊長 公式:s=aa

正方體的體積=邊長邊長邊長 公式:v=aaa

2.正方形

長方形的周長=(長+寬)2 公式:c=(a+b)2

長方形的面積=長寬 公式:s=ab

長方體的體積=長寬高 公式:v=abh

3.三角形

三角形的面積=底高2。 公式:s= ah2

4.平行四邊形

平行四邊形的面積=底高 公式:s= ah

5.梯形

梯形的'面積=(上底+下底)高2 公式:s=(a+b)h2

6.圓

直徑=半徑2 公式:d=2r

半徑=直徑2 公式:r= d2

圓的周長=圓周率直徑 公式:c=r

圓的面積=半徑半徑 公式:s=rr

7.圓柱

圓柱的側面積=底面的周長高。 公式:s=ch=rh

圓柱的表面積=底面的周長高+兩頭的圓的面積。 公式:s=ch+2s=ch+2r2

圓柱的總體積=底面積高。 公式:v=sh

8.圓錐

圓錐的總體積=底面積高1/3 公式:v=1/3sh

三角形內角和=180度。

平行線:同一平面內不相交的兩條直線叫做平行線

垂直:兩條直線相交成直角,像這樣的兩條直線,

我們就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

本文就是我們?yōu)閺V大同學準備的數學幾何體常用公式,希望可以為大家的學習起到一定作用!

數學基礎總結(九篇)

幾何形體計算公式1、長方形的周長=(長+寬)×2c=(a+b)×22、正方形的周長=邊長×4c=4a3、長方形的面積=長×寬s=ab4、正方形的面積=邊長×邊長s=a.a=a5、三角形的面積=底×高…
推薦度:
點擊下載文檔文檔為doc格式

相關數學基礎信息

  • 數學基礎總結(九篇)
  • 數學基礎總結(九篇)67人關注

    幾何形體計算公式1、長方形的周長=(長+寬)×2c=(a+b)×22、正方形的周長=邊長×4c=4a3、長方形的面積=長×寬s=ab4、正方形的面積=邊長×邊長s=a.a=a5、三角形的 ...[更多]