- 目錄
-
第1篇北師大版初一下冊數學知識點總結 第2篇初一下冊數學知識點總結滬教版 第3篇蘇科版初一下冊數學知識點總結 第4篇初一下冊數學知識點總結北師大版 第5篇初一下冊數學知識點總結歸納(湘教版 ) 第6篇初一下冊數學知識點總結歸納 第7篇新人教版初一下冊數學知識點總結歸納 第8篇初一下冊數學知識點總結歸納蘇教版 第9篇初一下冊數學知識點總結歸納浙教版 第10篇初一下冊數學知識點總結歸納滬教版 第11篇初一下冊數學期末試題的分析總結 第12篇初一下冊數學知識點總結歸納蘇科版 第13篇蘇科版初一下冊數學輔導資料總結 第14篇初一下冊數學知識點總結歸納(蘇科版) 第15篇初一下冊數學知識點總結歸納2023
【第1篇 北師大版初一下冊數學知識點總結
北師大版初一下冊數學知識點總結
相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。
平行線及其判定
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的性質
性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
平移
向左平移a個單位長度,可以得到對應點(_-a,y)
向上平移b個單位長度,可以得到對應點(_,y+b)
向下平移b個單位長度,可以得到對應點(_,y-b)
【第2篇 初一下冊數學知識點總結滬教版
一、整式
單項式和多項式統(tǒng)稱整式。
a)由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
b)單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,并非沒有系數,系數為1或-1。
c)一個單項式中,所有字母的指數和叫做這個單項式的次數(注意:常數項的單項式次數為0)
a)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數項。一個多項式中,次數項的次數,叫做這個多項式的次數.
b)單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數。多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數。多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中的那一項次數.
a)整式的加減實質上就是去括號后,合并同類項,運算結果是一個多項式或是單項式.
b)括號前面是“-”號,去括號時,括號內各項要變號,一個數與多項式相乘時,這個數與括號內各項都要相乘。
二、同底數冪的乘法
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
b)指數是1時,不要誤以為沒有指數;
c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對于加法,不僅底數相同,還要求指數相同才能相加;
d)當三個或三個以上同底數冪相乘時,法則可推廣為(其中m、n、p均為整數);
e)公式還可以逆用:(m、n均為整數)
a)冪的乘方法則:(m,n都是整數數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆。
b)(m,n都為整數)
c)底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3
d)底數有時形式不同,但可以化成相同。
e)要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f)積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn(n為正整數)。
g)冪的乘方與積乘方法則均可逆向運用。
五、同底數冪的除法
a)同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即(a≠0).
b)在應用時需要注意以下幾點:
1)法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a0。
2)任何不等于0的數的0次冪等于1,即a0=1(a≠0),如100=1,(-2.50=1),則00無意義。
c)任何不等于0的數的-p次冪(p是正整數),等于這個數的p的次冪的倒數,即(a≠0,p是正整數),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的,當a<0時,a-p的值可能是正也可能是負的,如,d)運算要注意運算順序。
六、整式的乘法
單項式相乘,它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
a)積的系數等于各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
b)相同字母相乘,運用同底數冪的乘法法則;
c)只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
d)單項式乘法法則對于三個以上的單項式相乘同樣適用;
e)單項式乘以單項式,結果仍是一個單項式。
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
a)單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
b)運算時要注意積的符號,多項式的每一項都包括它前面的符號;
c)在混合運算時,要注意運算順序。
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
a)多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數應等于原兩個多項式項數的積;
b)多項式相乘的結果應注意合并同類項;
c)對含有同一個字母的一次項系數是1的兩個一次二項式相乘(_+a)(_+b)=_2+(a+b)_+ab,其二次項系數為1,一次項系數等于兩個因式中常數項的和,常數項是兩個因式中常數項的積。對于一次項系數不為1的兩個一次二項式(m_+a)和(n_+b)相乘可以得到。
七.平方差公式
兩數和與這兩數差的積,等于它們的平方差,即。
其結構特征是:
a)公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
b)公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八、完全平方公式
兩數和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;
口訣:首平方,尾平方,2倍乘積在中央;
a)公式左邊是二項式的完全平方;
b)公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
c)在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現這樣的錯誤。
九、整式的除法
單項式相除,把系數、同底數冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式;
【第3篇 蘇科版初一下冊數學知識點總結
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大小:
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
【第4篇 初一下冊數學知識點總結北師大版
導語學得越多,懂得越多,想得越多,領悟得就越多,就像滴水一樣,一滴水或許很快就會被太陽蒸發(fā),但如果滴水不停的滴,就會變成一個水溝,越來越多,越來越多……本篇文章是為您整理的《初一下冊數學知識點總結北師大版》,供大家借鑒。
初一下冊數學知識點總結北師大版篇一
多項式除以單項式
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統(tǒng)稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括號法則,然后準確合并同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對于某些特殊的代數式,可采用“整體代入”進行計算。
五、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。
2、底數相同的冪叫做同底數冪。
3、同底數冪乘法的運算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運算法則”異同點
1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。
(3)對于含有3個或3個以上的運算,法則仍然成立。
2、不同點:
(1)同底數冪相乘是指數相加。
(2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。
九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n=am÷an(a≠0)。
十、零指數冪
1、零指數冪的意義:任何不等于0的數的0次冪都等于1,即:a0=1(a≠0)。
十一、負指數冪
1、任何不等于零的數的―p次冪,等于這個數的p次冪的倒數,即:
注:在同底數冪的除法、零指數冪、負指數冪中底數不為0。
十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其余字母連同它的指數不變,作為積的因式。
2、系數相乘時,注意符號。
3、相同字母的冪相乘時,底數不變,指數相加。
4、對于只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。
5、單項式乘以單項式的結果仍是單項式。
6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。
(二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。
2、運算時注意積的符號,多項式的每一項都包括它前面的符號。
3、積是一個多項式,其項數與多項式的項數相同。
4、混合運算中,注意運算順序,結果有同類項時要合并同類項,從而得到最簡結果。
(三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數等于兩個多項式項數的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。
4、運算結果中有同類項的要合并同類項。
5、對于含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(_+a)(_+b)=_2+(a+b)_+ab。
十三、平方差公式
1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等于它們的平方之差。
2、平方差公式中的a、b可以是單項式,也可以是多項式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成
(a+b)·(a-b)的形式,然后看a2與b2是否容易計算。
初一下冊數學知識點總結北師大版篇二
一、同底數冪的乘法
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
b)指數是1時,不要誤以為沒有指數;
c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對于加法,不僅底數相同,還要求指數相同才能相加;
二、冪的乘方與積的乘方
三、同底數冪的除法
(1)運用法則的前提是底數相同,只有底數相同,才能用此法則
(2)底數可以是具體的數,也可以是單項式或多項式
(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負
四、整式的乘法
1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。
如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。
2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。
五、平方差公式
表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等于這兩個數的平方差,這個公式就叫做乘法的平方差公式
公式運用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
六、完全平方公式
完全平方公式中常見錯誤有:
①漏下了一次項
②混淆公式
③運算結果中符號錯誤
④變式應用難于掌握。
七、整式的除法
1、單項式的除法法則
單項式相除,把系數、同底數冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
注意:首先確定結果的系數(即系數相除),然后同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。
初一下冊數學知識點總結北師大版篇三
1.1正數與負數
在以前學過的0以外的數前面加上負號“-”的數叫負數(negativenumber)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上“+”)。
1.2有理數
正整數、0、負整數統(tǒng)稱整數(integer),正分數和負分數統(tǒng)稱分數(fraction)。
整數和分數統(tǒng)稱有理數(rationalnumber)。
通常用一條直線上的點表示數,這條直線叫數軸(numbera_is)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾档膬蓚€數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等于加這個數的相反數。
1.4有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(e_ponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。
【第5篇 初一下冊數學知識點總結歸納(湘教版 )
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大?。?/p>
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
第七章 平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。
12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
第八章 二元一次方程組
一、知識網絡結構
二、知識要點
1、含有未知數的等式叫方程,使方程左右兩邊的值相等的未知數的值叫方程的解。
2、方程含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為 ( 為常數,并且 )。使二元一次方程的左右兩邊的值相等的未知數的值叫二元一次方程的解,一個二元一次方程一般有無數組解。
3、方程組含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數的式子表示另一個未知數,如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數的式子表示另一個未知數;再將表示出的未知數代入另一個方程中,從而消去一個未知數,求出另一個未知數的值,將求得的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數的系數既不相等又不互為相反數,就用適當的數去乘方程的兩邊,使同一個未知數的系數相等或互為相反數;(2)把兩個方程的兩邊分別相加或相減,消去一個未知數;(3)解這個一元一次方程,求出一個未知數的值;(4)將求出的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數的系數特點,確定先消去哪個未知數;②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數,得到一個關于另外兩個未知數的二元一次方程組;③解這個二元一次方程組,求得兩個未知數的值;④將這兩個未知數的值代入原方程組中較簡單的一個方程中,求出第三個未知數的值,從而得到原三元一次方程組的解。
第九章 不等式與不等式組
一、知識網絡結構
二、知識要點
1、用不等號表示不等關系的式子叫不等式,不等號主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知數的不等式中,使不等式成立的未知數的值叫不等式的解,一個含有未知數的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式叫一元一次不等式。
3、不等式的性質:
①性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向 不變 。
用字母表示為: 如果 ,那么 ; 如果 ,那么 ;
如果 ,那么 ; 如果 ,那么 。
②性質2:不等式的兩邊同時乘以(或除以)同一個 正數 ,不等號的方向 不變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
③性質3:不等式的兩邊同時乘以(或除以)同一個 負數 ,不等號的方向 改變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數化為1 。這與解一元一次方程類似,在解時要根據一元一次不等式的具體情況靈活選擇步驟。
5、不等式組中含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式組叫一元一次不等式組。使不等式組中的每個不等式都成立的未知數的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數軸上表示出來。求不等式組的解集的過程叫解不等式組。
6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數軸求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )。
7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大取中間,大大小小無處找。
第十章 數據的收集、整理與描述
知識要點
1、對數據進行處理的一般過程:收集數據、整理數據、描述數據、分析得出結論。
2、數據收集過程中,調查的方法通常有兩種:全面調查和抽樣調查。
3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數據。
4、抽樣調查簡稱抽查,它只抽取一部分對象進行調查,根據調查數據推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數目叫這個樣本的容量 。
5、畫頻數直方圖的步驟:①計算數差(值與最小值的差);②確定組距和組數;③列頻數分布表;④畫頻數直方圖 。
【第6篇 初一下冊數學知識點總結歸納
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大?。?/p>
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
第七章 平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。
12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
第八章 二元一次方程組
一、知識網絡結構
二、知識要點
1、含有未知數的等式叫方程,使方程左右兩邊的值相等的未知數的值叫方程的解。
2、方程含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為 ( 為常數,并且 )。使二元一次方程的左右兩邊的值相等的未知數的值叫二元一次方程的解,一個二元一次方程一般有無數組解。
3、方程組含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數的式子表示另一個未知數,如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數的式子表示另一個未知數;再將表示出的未知數代入另一個方程中,從而消去一個未知數,求出另一個未知數的值,將求得的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數的系數既不相等又不互為相反數,就用適當的數去乘方程的兩邊,使同一個未知數的系數相等或互為相反數;(2)把兩個方程的兩邊分別相加或相減,消去一個未知數;(3)解這個一元一次方程,求出一個未知數的值;(4)將求出的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數的系數特點,確定先消去哪個未知數;②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數,得到一個關于另外兩個未知數的二元一次方程組;③解這個二元一次方程組,求得兩個未知數的值;④將這兩個未知數的值代入原方程組中較簡單的一個方程中,求出第三個未知數的值,從而得到原三元一次方程組的解。
第九章 不等式與不等式組
一、知識網絡結構
二、知識要點
1、用不等號表示不等關系的式子叫不等式,不等號主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知數的不等式中,使不等式成立的未知數的值叫不等式的解,一個含有未知數的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式叫一元一次不等式。
3、不等式的性質:
①性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向 不變 。
用字母表示為: 如果 ,那么 ; 如果 ,那么 ;
如果 ,那么 ; 如果 ,那么 。
②性質2:不等式的兩邊同時乘以(或除以)同一個 正數 ,不等號的方向 不變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
③性質3:不等式的兩邊同時乘以(或除以)同一個 負數 ,不等號的方向 改變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數化為1 。這與解一元一次方程類似,在解時要根據一元一次不等式的具體情況靈活選擇步驟。
5、不等式組中含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式組叫一元一次不等式組。使不等式組中的每個不等式都成立的未知數的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數軸上表示出來。求不等式組的解集的過程叫解不等式組。
6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數軸求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )。
7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大取中間,大大小小無處找。
第十章 數據的收集、整理與描述
知識要點
1、對數據進行處理的一般過程:收集數據、整理數據、描述數據、分析得出結論。
2、數據收集過程中,調查的方法通常有兩種:全面調查和抽樣調查。
3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數據。
4、抽樣調查簡稱抽查,它只抽取一部分對象進行調查,根據調查數據推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數目叫這個樣本的容量 。
5、畫頻數直方圖的步驟:①計算數差(值與最小值的差);②確定組距和組數;③列頻數分布表;④畫頻數直方圖 。
【第7篇 新人教版初一下冊數學知識點總結歸納
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大?。?/p>
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
第七章 平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。
12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
【第8篇 初一下冊數學知識點總結歸納蘇教版
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。 兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。 兩條直線相交,有2對對頂角。 對頂角相等。 5.1.2
兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。 ⑶垂直是相交的特殊情況。 ⑷垂直的記法:a⊥b,ab⊥cd。
畫已知直線的垂線有無數條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。 直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。 在同一平面內兩條直線的關系只有兩種:相交或平行。
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。 5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。 兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。
判定兩條直線平行的方法:
方法1 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2 兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
方法3 兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。 5.3平行線的性質
平行線具有性質:
性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。 性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。 性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。
判斷一件事情的語句叫做命題。 5.4平移
⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
⑵新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點,連接各
組對應點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。
第六章 《平面直角坐標系》
6.1平面直角坐標系 6.1.1有序數對
有順序的兩個數a與b組成的數對,叫做有序數對。 6.1.2平面直角坐標系
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為_軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數對來表示。
建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了ⅰ、ⅱ、ⅲ、ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。 6.2坐標方法的簡單應用 6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區(qū)域內一些地點分布情況平面圖的過程如下: ⑴建立坐標系,選擇一個適當的參照點為原點,確定_軸、y軸的正方向; ⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度; ⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。 6.2.2用坐標表示平移
在平面直角坐標系中,將點(_,y)向右(或左)平移a個單位長度,可以得到對應點(_+a,y)(或(_-a,y));將點(_,y)向上(或下)平移b個單位長度,可以得到對應點(_,y+b)(或(_,y-b))。
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
第七章 《三角形》
7.1與三角形有關的線段 7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。
頂點是a、b、c的三角形,記作“△abc”,讀作“三角形abc”。 三角形兩邊的和大于第三邊。 7.1.2三角形的高、中線和角平分線 7.1.3三角形的穩(wěn)定性
三角形具有穩(wěn)定性。 7.2與三角形有關的角 7.2.1三角形的內角
三角形的內角和等于180。 7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。 三角形的一個外角等于與它不相鄰的兩個內角的和。 三角形的一個外角大于與它不相鄰的任何一個內角。 7.3多邊形及其內角和 7.3.1多邊形
在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。 n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形。
多邊形的內角和n邊形的內角和公式:180(n-2)
多邊形的外角和等于360。
1 三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形。
☆2判斷三條線段能否組成三角形。
①a+b>c(a b為最短的兩條線段)②a-b
☆3第三邊取值范圍: a-b < c<13. 4 對應周長取值范圍
若兩邊分別為a,b則周長的取值范圍是 2a<2(a+b) a為較長邊。
如兩邊分別為5和7則周長的取值范圍是 14<24.
☆5 三角形的角平分線、高、中線都有三條,都是線段。其中角平分線、中線都交于一點且交點在三角形內部,高所在直線交于一點。
6“三線”特征:☆三角形的中線
①平分底邊。
②分得兩三角形面積相等并等于原三角形面積的一半。
③分得兩三角形的周長差等于鄰邊差。
☆7 直角三角形:
①兩銳角互余。
② 30度所對的直角邊是斜邊的一半。
③三條高交于三角形的一個頂點。
④ ∠a=1/2∠b=1/3∠c
⑤ ∠a: ∠b: ∠c=1:2:3
⑥ ∠a=∠b+∠c ⑦ ∠a: ∠b: ∠c=1:1:2 ⑧ ∠a=90-∠b
☆8 相關命題:
→1 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。
→2 銳角三角形中的銳角的取值范圍是60≤_<90 。銳角不小于60度。 →3 任意一個三角形兩角平分線的夾角=90+第三角的一半。
→4 鈍角三角形有兩條高在外部。
→5 全等圖形的大小(面積、周長)、形狀都相同。
→6 面積相等的兩個三角形不一定是全等圖形。 →7 能夠完全重合的兩個圖形是全等圖形。
→8 三角形具有穩(wěn)定性。
9 三條邊分別對應相等的兩個三角形全等。
10 三個角對應相等的兩個三角形不一定全等。
11 兩個等邊三角形不一定全等。
12 兩角及一邊對應相等的兩個三角形全等。
13 兩邊及一角對應相等的兩個三角形不一定全等。 14 兩邊及它們的夾角對應相等的兩個三角形全等。 15 兩條直角邊對應相等的兩個直角三角形全等。
16 一條斜邊和一直角邊對應相等的兩個三角形全等。
17 一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。
18 一角和一邊對應相等的兩個直角三角形不一定全等。
19 有一個角是60的等腰三角形是等邊三角形。
【第9篇 初一下冊數學知識點總結歸納浙教版
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大?。?/p>
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
第七章 平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。
12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
第八章 二元一次方程組
一、知識網絡結構
二、知識要點
1、含有未知數的等式叫方程,使方程左右兩邊的值相等的未知數的值叫方程的解。
2、方程含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為 ( 為常數,并且 )。使二元一次方程的左右兩邊的值相等的未知數的值叫二元一次方程的解,一個二元一次方程一般有無數組解。
3、方程組含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數的式子表示另一個未知數,如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數的式子表示另一個未知數;再將表示出的未知數代入另一個方程中,從而消去一個未知數,求出另一個未知數的值,將求得的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數的系數既不相等又不互為相反數,就用適當的數去乘方程的兩邊,使同一個未知數的系數相等或互為相反數;(2)把兩個方程的兩邊分別相加或相減,消去一個未知數;(3)解這個一元一次方程,求出一個未知數的值;(4)將求出的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數的系數特點,確定先消去哪個未知數;②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數,得到一個關于另外兩個未知數的二元一次方程組;③解這個二元一次方程組,求得兩個未知數的值;④將這兩個未知數的值代入原方程組中較簡單的一個方程中,求出第三個未知數的值,從而得到原三元一次方程組的解。
第九章 不等式與不等式組
一、知識網絡結構
二、知識要點
1、用不等號表示不等關系的式子叫不等式,不等號主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知數的不等式中,使不等式成立的未知數的值叫不等式的解,一個含有未知數的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式叫一元一次不等式。
3、不等式的性質:
①性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向 不變 。
用字母表示為: 如果 ,那么 ; 如果 ,那么 ;
如果 ,那么 ; 如果 ,那么 。
②性質2:不等式的兩邊同時乘以(或除以)同一個 正數 ,不等號的方向 不變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
③性質3:不等式的兩邊同時乘以(或除以)同一個 負數 ,不等號的方向 改變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數化為1 。這與解一元一次方程類似,在解時要根據一元一次不等式的具體情況靈活選擇步驟。
5、不等式組中含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式組叫一元一次不等式組。使不等式組中的每個不等式都成立的未知數的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數軸上表示出來。求不等式組的解集的過程叫解不等式組。
6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數軸求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )。
7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大取中間,大大小小無處找。
第十章 數據的收集、整理與描述
知識要點
1、對數據進行處理的一般過程:收集數據、整理數據、描述數據、分析得出結論。
2、數據收集過程中,調查的方法通常有兩種:全面調查和抽樣調查。
3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數據。
4、抽樣調查簡稱抽查,它只抽取一部分對象進行調查,根據調查數據推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數目叫這個樣本的容量 。
5、畫頻數直方圖的步驟:①計算數差(值與最小值的差);②確定組距和組數;③列頻數分布表;④畫頻數直方圖 。
【第10篇 初一下冊數學知識點總結歸納滬教版
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。 兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。 兩條直線相交,有2對對頂角。 對頂角相等。 5.1.2
兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。 ⑶垂直是相交的特殊情況。 ⑷垂直的記法:a⊥b,ab⊥cd。
畫已知直線的垂線有無數條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。 直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。 在同一平面內兩條直線的關系只有兩種:相交或平行。
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。 5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。 兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。
判定兩條直線平行的方法:
方法1 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2 兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
方法3 兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。 5.3平行線的性質
平行線具有性質:
性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。 性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。 性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。
判斷一件事情的語句叫做命題。 5.4平移
⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
⑵新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點,連接各
組對應點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。
第六章 《平面直角坐標系》
6.1平面直角坐標系 6.1.1有序數對
有順序的兩個數a與b組成的數對,叫做有序數對。 6.1.2平面直角坐標系
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為_軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數對來表示。
建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了ⅰ、ⅱ、ⅲ、ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。 6.2坐標方法的簡單應用 6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區(qū)域內一些地點分布情況平面圖的過程如下: ⑴建立坐標系,選擇一個適當的參照點為原點,確定_軸、y軸的正方向; ⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度; ⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。 6.2.2用坐標表示平移
在平面直角坐標系中,將點(_,y)向右(或左)平移a個單位長度,可以得到對應點(_+a,y)(或(_-a,y));將點(_,y)向上(或下)平移b個單位長度,可以得到對應點(_,y+b)(或(_,y-b))。
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
第七章 《三角形》
7.1與三角形有關的線段 7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。
頂點是a、b、c的三角形,記作“△abc”,讀作“三角形abc”。 三角形兩邊的和大于第三邊。 7.1.2三角形的高、中線和角平分線 7.1.3三角形的穩(wěn)定性
三角形具有穩(wěn)定性。 7.2與三角形有關的角 7.2.1三角形的內角
三角形的內角和等于180。 7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。 三角形的一個外角等于與它不相鄰的兩個內角的和。 三角形的一個外角大于與它不相鄰的任何一個內角。 7.3多邊形及其內角和 7.3.1多邊形
在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。 n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形。
多邊形的內角和n邊形的內角和公式:180(n-2)
多邊形的外角和等于360。
1 三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形。
☆2判斷三條線段能否組成三角形。
①a+b>c(a b為最短的兩條線段)②a-b
☆3第三邊取值范圍: a-b < c<13. 4 對應周長取值范圍
若兩邊分別為a,b則周長的取值范圍是 2a<2(a+b) a為較長邊。
如兩邊分別為5和7則周長的取值范圍是 14<24.
☆5 三角形的角平分線、高、中線都有三條,都是線段。其中角平分線、中線都交于一點且交點在三角形內部,高所在直線交于一點。
6“三線”特征:☆三角形的中線
①平分底邊。
②分得兩三角形面積相等并等于原三角形面積的一半。
③分得兩三角形的周長差等于鄰邊差。
☆7 直角三角形:
①兩銳角互余。
② 30度所對的直角邊是斜邊的一半。
③三條高交于三角形的一個頂點。
④ ∠a=1/2∠b=1/3∠c
⑤ ∠a: ∠b: ∠c=1:2:3
⑥ ∠a=∠b+∠c ⑦ ∠a: ∠b: ∠c=1:1:2 ⑧ ∠a=90-∠b
☆8 相關命題:
→1 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。
→2 銳角三角形中的銳角的取值范圍是60≤_<90 。銳角不小于60度。 →3 任意一個三角形兩角平分線的夾角=90+第三角的一半。
→4 鈍角三角形有兩條高在外部。
→5 全等圖形的大小(面積、周長)、形狀都相同。
→6 面積相等的兩個三角形不一定是全等圖形。 →7 能夠完全重合的兩個圖形是全等圖形。
→8 三角形具有穩(wěn)定性。
9 三條邊分別對應相等的兩個三角形全等。
10 三個角對應相等的兩個三角形不一定全等。
11 兩個等邊三角形不一定全等。
12 兩角及一邊對應相等的兩個三角形全等。
13 兩邊及一角對應相等的兩個三角形不一定全等。 14 兩邊及它們的夾角對應相等的兩個三角形全等。 15 兩條直角邊對應相等的兩個直角三角形全等。
16 一條斜邊和一直角邊對應相等的兩個三角形全等。
17 一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。
18 一角和一邊對應相等的兩個直角三角形不一定全等。
19 有一個角是60的等腰三角形是等邊三角形。
【第11篇 初一下冊數學期末試題的分析總結
初一下冊數學期末試題的分析總結
一、選擇題(每小題2分,共20分)
1.如圖,若m∥n,∠1=105°,則∠2=
a. 55° b. 60° c. 65° d. 75°
2. 在1000個數據中,用適當的方法抽取50個體為樣本進行統(tǒng)計,頻數分布表中54.5~57.5這一組的頻率為0.12,估計總體數據落在54.5~57.5之間的約有個.
a. 120 b. 60 c. 12 d. 6
3 設 ,a在兩個相鄰整數之間,則這兩個整數是
a. 1和2 b. 2和3 c. 3和4 d. 4和5
4.已知不等式3_﹣a≤0的正整數解恰是1,2,3,4,那么a的取值范圍是
a. a12 b. 12≤a≤15 c. 12a≤15 p= 12≤a
5.(4分)(2005常州)將100個數據分成8個組,如下表:則第六組的頻數為
組號 1 2 3 4 5 6 7 8
頻數 11 14 12 13 13 _ 12 10
a. 12 b. 13 c. 14 d. 15
6.不等式組 無解,則a的取值范圍是
7.在方程組 中,若未知數_,y滿足_+y0,則m的取值范圍在數軸上的表示應是如圖所示的
a. b. c. d.
8.若方程組 的解_與y相等.則a的
a. 4 b. 10 c. 11 d. 12
9.在下列實數 ,3.14159265, ,﹣8, , , 中無理數有
a. 3個 b. 4個 c. 5個 d. 6個
10.要使兩點 、 都在平行于 軸的某一直線上,那么必須滿足( )
a. b. c. d.
11.為了了解一批產品的質量,從中抽取300個產品進行檢驗,在這個問題中,300個產品的質量叫做
a. 總體 b. 個體 c. 總體的一個樣本 d. 普查方式
12.如圖所示,若三角形abc中經平移后任意一點p 的對應點為 ,則點a的對應 點 的坐標是( ) a.(4,1) b.(9,-4) c.(-6,7) d.(-1,2)
二.填空題
13. 點a(a2+1,﹣1﹣b2)在第 象限.
14. 一組數據有50個,落在5個小組內,第一、二、三、四組的頻數分別為3、8、 21,13,則第五小組的頻數為 .
15 將點p(﹣3,y)向下平移3個單位,向左平移2個單位后得到點q(_,﹣1),則_y=
16 已知 和 互為相反數,且_﹣y+4的平方根是它本身,則_= ,y=
17. 的正整數解是_____.
18若y= ,則 =_______.
19.若不等式組 的解集是空集,則a、b的大小關系是_______________.
三、 解答題
20、解方程組: 21、解下列不等式組
22、已知 , 求7(_+y)-20的立方根。
23 計算: + + ﹣ .
24已知: 如圖, ∠c = ∠1, ∠2和∠d互余, be⊥fd于g.
求證: ab∥cd .
25.已知:如圖,∠1 =∠2,∠3 =∠4,∠5 =∠6.求證:ed//fb.
26.(9分)如圖,在平面直角坐標系中,四邊形abcd各頂點的坐標分別是a(-3,4)、b(2,3)、c(2,0)、d(-4,-2),且ad與 軸交點e的'坐標為 ,求這個四邊形的面積。(提示:分別過點a、d向 軸作垂線)
27小明在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的家庭收入情況. 他從中隨機調查了40戶居民家庭收入情況(收入取整數,單位:元),并繪制了如下的頻數分布表和頻數分布直方圖.(8分)
分組 頻數 百分比
600≤ 800
2 5%
800≤ 1000 6 15%
1000≤ 1200 45%
9 22.5%
1600≤ 1800 2
合計 40 100%
根據以上提供的信息,解答下列問題:
(1)補全頻數分布表.(2)補全頻數分布直方圖.
(3)請你估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
28. (10分)某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元.
(1)若該超市同時一次購進甲、乙兩種商品共80件,恰好用去1600元,求能購進甲、乙兩種商品各多少件?
(2)若該超市為使甲、乙兩種商品共80件的總利潤(利潤=售價-進價)不少于600元,但 又不超過610元,請你幫助該超市設計相應的進貨方案.
【第12篇 初一下冊數學知識點總結歸納蘇科版
第五章 平等線與相交線
1、同角或等角的余角相等,同角或等角的補角相等。
2、對頂角相等
3、判斷兩直線平行的條件:
1)同位角相等,兩直線平行。(2)內錯角相等,兩直線平行。 3)同旁內角互補,兩直線平行。(4)如果兩條直線都和第三條直線平行
4、平行線的特征:
(1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。(3)同旁內角互補,兩直線平行。
5、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成“如
果……,那么……”的形式。具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論。
6、平移
平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移,平移不改變物體的形狀和大小。
(1) 把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
(2) 新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
第六章 平面直角坐標系
1、含有兩個數的詞來表示一個確定個位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2、數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。 (1)._軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2).第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3).在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
4.點到軸及原點的距離
點到_軸的距離為|y|; 點到y(tǒng)軸的距離為|_|;點到原點的距離為_的平方加y的平方再開根號;
在平面直角坐標系中對稱點的特點:
1.關于_成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。
2.關于y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。
3關于原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。
各象限內和坐標軸上的點和坐標的規(guī)律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
_軸正方向:(+,0)_軸負方向:(-,0)y軸正方向:(0,+)y軸負方向:(0,-)
_軸上的點縱坐標為0,y軸橫坐標為0。
第七章 三角形
1、三角形任意兩邊之和大于第三邊,確形任意兩邊之差小于第三邊。
2、三角形三個內角的和等于180度。
3、直角三角形的兩個銳角互余
4、三角形的三條角平分線交于一點,三條中線交于一點;三角形的三條高所在的直線交于一點。
5、直角三角形全等的條件:
斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成“斜邊、直角邊”或“hl”。
(只要有任意兩條邊相等,這兩個直角三角形就全等)。
6、三角形全等的條件:
(1)三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“sss”。
(2)兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為“角邊角”或“asa”。
(3)兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為“角角邊”或“aas”。
(4)兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為“邊角邊”或“sas”。
27、等腰三角形的特征:
(1) 有兩條邊相等的三角形叫做等腰三角形;
(2) 等腰三角形是軸對稱圖形;
(3) 等腰三角形頂角的平分線、底邊上的中線、底邊上的重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸。
(4)等腰三角形的兩個底角相等。
(5)等腰三角形的底角只能是銳角。
9.三角形內角和為180°,三角形的一個外交等于與他不相鄰的兩個內角的和,三角形的一個外角大于與它不相鄰的任何一個內角。
多邊形
1.有一些線段首位順次相接組成的圖形叫做多邊形
2、多邊形相鄰兩邊組成的角叫做它的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
3、連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
4、畫出多邊形的任何一條邊所在的直線,如果整個多邊形都在這條直線的同一側,那么這個多邊形就是凸多邊形,否則就是凹多邊形。
5.各個角都相等,各條邊都相等的多邊形叫做正多邊形。
6、n邊形的內角和等于(n-2)_180°
多邊形的外角和等于360°
7、如果說四邊形的一對角互補,那么另一組角也互補。
鑲嵌
1.鑲嵌也叫作密鋪,指的是:用一些不重疊擺放的多邊形把平面的一部分無縫隙的完全覆蓋。
第八章 二元一次方程組
1、二元一次方程組的意義:含有兩個未知數的方程并且所含未知項的次數是1,這樣的整式方程叫做二元一次方程。
把兩個一次方程聯立在一起,那么這兩個方程就組成了一個二元一次方程組。
有幾個方程組成的一組方程叫做方程組。如果方程組中含有兩個未知數,且含未知數的項的次數都是一次,那么這樣的方程組叫做二元一次方程組。
2、 二元一次方程組有兩種解法,一種是代入消元法,一種是加減消元法.
代入消元法:把二元一次方程中的一個方程的一個未知數用含另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解。
加減消元法:兩個二元一次方程中同一未知數的系數相反或相等時,把這兩個方程的兩邊分別相加或向減,就能消去這個未知數,得到一個一元一次方程。
3、三元一次方程組:在3個方程組中,共含有3個未知數,且每個未知數的次數都是1次,像這樣的方程組叫做三元一次方程組.
第九章 不等式與不等式組
1、不等式:用不等號將兩個解析式連結起來所成的式子。
2、不等式的最基本性質有:①如果_>y,那么y<_;如果y<_,那么_>y;②如果_>y,y>z;那么_>z;③如果_>y,而z為任意實數,那么_+z>y+z;④ 如果_>y,z>0,那么_z>yz;⑤如果_>y,z<0,那么_z<yz。
2、不等式的基本性質:
性質1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質2:如果a>b,那么a+c>b+c(不等式的可加性).
性質3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性質4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法則)
性質5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性質6:如果a>b>0,n∈n,n>1,那么an>bn,且.當0<1時也成立. (乘方法則)
性質7:如果a>等于b c>b 那么c大于等于a
性質7不一定成立,如a取值28,b取值3,c取值19,則c不大于a
4、不等式組:幾個含有相同未知數的不等式聯立起來,叫做不等式組.
5、解不等式組,可以先把其中的不等式逐條算出各自的解集,然后分別在數軸上表示出來。
以兩條不等式組成的不等式組為例,
①若兩個未知數的解集在數軸上表示同向左,就取在左邊的未知數的解集為不等式組的解集,此乃“同小取小”
②若兩個未知數的解集在數軸上表示同向右,就取在右邊的未知數的解集為不等式組的解集,此乃“同大取大”
③若兩個未知數的解集在數軸上相交,就取它們之間的值為不等式組的解集。若_表示不等式的解集,此時一般表示為a<_<b,或a≤_≤b。此乃“相交取中”
④若兩個未知數的解集在數軸上向背,那么不等式組的解集就是空集,不等式組無解。此乃“向背取空”
第十章 數據的收集、整理與描述
1、全面調查:考察全體對象的調查叫做全面調查,也叫普查。
2、抽樣調查:只抽取一部分對象進行調查,然后根據數據推斷全體對象的情況。要考察的全體對象稱為總體,組成總體的每一個考察對象稱為個體,被抽取的那些個體組成一個樣本,樣本中個體的數目稱為樣本容量。
3、直方圖的繪制方法:①集中和記錄數據,求出其值和最小值。數據的數量應在100個以上,在數量不多的情況下,至少也應在50個以上。
②將數據分成若干組,并做好記號。分組的數量在5-12之間較為適宜。
③計算組距的寬度。用組數去除值和最小值之差,求出組距的寬度。
④計算各組的界限位。各組的界限位可以從第一組開始依次計算,第一組的下界為最小值減去組距的一半,第一組的上界為其下界值加上組距。第二組的下界限位為第一組的上界限值,第二組的下界限值加上組距,就是第二組的上界限位,依此類推。
⑤統(tǒng)計各組數據出現頻數,作頻數分布表。
⑥作直方圖。以組距為底長,以頻數為高,作各組的矩形圖。
【第13篇 蘇科版初一下冊數學輔導資料總結
導語,弄清答題的要求和方式。例如:選擇題是單選項還是雙選項。單選題常用的方法有淘汰法和直接法。淘汰法的特點是,根據已學知識經過判斷去掉不合題意者,剩下的一個就是正確的答案。直接法的特點是,根據已學知識經過推論或計算得出答案,以此答案對照各備選答案,相同者為正確答案,解題時找到一個正確答案后,剩下部分可以不再考慮。多選題要求嚴格,解題時對每一個備選答案都要進行認真判斷。難度較小的題常用淘汰法,難度較大的題常用分析法和逆推法。淘汰法與單選題所用的淘汰法相同;分析法是經過分析得出結論;逆推法是從答案出發(fā)反推,舍去不合題意者,剩下的為答案。涉及到計算的題,則常用直接法,即用計算結果對照備選答案,相同者為正確答案。
第二是要注意弄清評分得分的理由。還以選擇題為例,特別是雙選項的選擇題,要看清是全正確才得分還是僅選一項正確了就得一半分數,有沒有倒扣分。遇到不是倒扣分的選擇題,自己把握不大時可以大膽地去猜,猜時要選用淘汰法排除一些選項,剩下的選項用邏輯推理或直覺去猜,千萬不要不敢選。但是,遇到倒扣分的題要防止沒有把握的猜測。
第三是要弄清作答方式是在什么地方寫答案。若在機讀的答題卡上作答時,要在目紙上選好選項后,再用鉛筆在答題卡上將相應的信息點涂黑。涂黑時要注意涂得標準,不要涂了改,改了涂,以免因為涂黑不規(guī)范而被計算機誤讀。
第四要注意把握時間。一般選擇題大體上是得1分的用1分鐘時間,得2分的用兩分鐘時間,得3分的用3分鐘時間。切忌在個別難題上糾纏太久。一下子把握不準的問題,可先選一個自認合理的答案,并在草紙上記下該題的位置,待全卷答完后,再回過頭來仔細推敲。
第五是要注意簡答題要想好了再寫。簡答題要求簡單明了,答題時要抓住與問題之間最本質的聯系,講明道理。
第六要注意的是,解大型題尤其是計算題,要能做幾步就做幾步,寧可“會不全”,也不要“全不會”。對于一眼就看出結論的題,也要寫出步驟,要一步不少,一字不落。
第七是要注意檢查。在時間允許的情況下,認真檢查,改正因為任何粗心導致的錯誤,千萬不要提前交卷。
考生除了注意上述三步復習法以外,在復習時還應注意自我心理調適,注意安排好飲食和睡眠,注意勞逸結合和身體鍛煉。另外,正式考試時,每考完一科盡快安排未考科目的復習,不要與別人對答案,以免發(fā)現自己的答案錯了而導致心煩意亂,影響下一科的復習和考試。
【第14篇 初一下冊數學知識點總結歸納(蘇科版)
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大?。?/p>
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
第七章 平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。
12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
【第15篇 初一下冊數學知識點總結歸納2023
第五章 相交線與平行線
一、知識網絡結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是
鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,
與 互為鄰補角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那么結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那么結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。
第六章 實數
知識點一實數的分類
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
知識點二實數的相關概念
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|≥0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .
5.立方根
如果_3=a,那么_叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
知識點三實數與數軸
數軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
知識點四實數大小的比較
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
2.正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
3.無理數的比較大?。?/p>
知識點五實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.
2.減法:減去一個數等于加上這個數的相反數.
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.
(3)零指數與負指數
知識點六有效數字和科學記數法
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.
第七章 平面直角坐標系
一、知識網絡結構
二、知識要點
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。
7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐
標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)
8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。
10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。
11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。
12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數,即 a = -b 。
13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。
14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。
第八章 二元一次方程組
一、知識網絡結構
二、知識要點
1、含有未知數的等式叫方程,使方程左右兩邊的值相等的未知數的值叫方程的解。
2、方程含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為 ( 為常數,并且 )。使二元一次方程的左右兩邊的值相等的未知數的值叫二元一次方程的解,一個二元一次方程一般有無數組解。
3、方程組含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數的式子表示另一個未知數,如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數的式子表示另一個未知數;再將表示出的未知數代入另一個方程中,從而消去一個未知數,求出另一個未知數的值,將求得的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數的系數既不相等又不互為相反數,就用適當的數去乘方程的兩邊,使同一個未知數的系數相等或互為相反數;(2)把兩個方程的兩邊分別相加或相減,消去一個未知數;(3)解這個一元一次方程,求出一個未知數的值;(4)將求出的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數的系數特點,確定先消去哪個未知數;②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數,得到一個關于另外兩個未知數的二元一次方程組;③解這個二元一次方程組,求得兩個未知數的值;④將這兩個未知數的值代入原方程組中較簡單的一個方程中,求出第三個未知數的值,從而得到原三元一次方程組的解。
第九章 不等式與不等式組
一、知識網絡結構
二、知識要點
1、用不等號表示不等關系的式子叫不等式,不等號主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知數的不等式中,使不等式成立的未知數的值叫不等式的解,一個含有未知數的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式叫一元一次不等式。
3、不等式的性質:
①性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向 不變 。
用字母表示為: 如果 ,那么 ; 如果 ,那么 ;
如果 ,那么 ; 如果 ,那么 。
②性質2:不等式的兩邊同時乘以(或除以)同一個 正數 ,不等號的方向 不變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
③性質3:不等式的兩邊同時乘以(或除以)同一個 負數 ,不等號的方向 改變 。
用字母表示為: 如果 ,那么 (或 );如果 ,那么 (或 );
如果 ,那么 (或 );如果 ,那么 (或 );
4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數化為1 。這與解一元一次方程類似,在解時要根據一元一次不等式的具體情況靈活選擇步驟。
5、不等式組中含有一個未知數,并且所含未知數的項的次數都是1,這樣的不等式組叫一元一次不等式組。使不等式組中的每個不等式都成立的未知數的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數軸上表示出來。求不等式組的解集的過程叫解不等式組。
6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數軸求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )。
7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大取中間,大大小小無處找。
第十章 數據的收集、整理與描述
知識要點
1、對數據進行處理的一般過程:收集數據、整理數據、描述數據、分析得出結論。
2、數據收集過程中,調查的方法通常有兩種:全面調查和抽樣調查。
3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數據。
4、抽樣調查簡稱抽查,它只抽取一部分對象進行調查,根據調查數據推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數目叫這個樣本的容量 。
5、畫頻數直方圖的步驟:①計算數差(值與最小值的差);②確定組距和組數;③列頻數分布表;④畫頻數直方圖 。